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Abstract
We develop an approach for derivation of quantum–classical relaxation
equations for a two-channel problem. The treatment is based on the adiabatic
channel wavefunctions and the system–bath coupling is modelled as a bilinear
interaction in momentum representation. In the quantum–classical limit we
obtain Liouville equations with the relaxation operator containing diffusion
terms diagonal in Liouvillian space and the off-diagonal part which is
responsible for thermal interlevel transitions. The high-frequency interlevel
quantum beats are fully taken into account in this relaxation term. In the
framework of the present formulation and as a consequence of the momentum-
dependent interaction the Smoluchovsky diffusion limit can be reached without
invoking Fokker–Planck equations as an intermediate step. The inherent
property of equations so obtained is that the partial rates of interlevel transitions
obey the principle of detailed balance. This result could not be gained in earlier
treatments of the two-level diffusion problem.

1. Introduction

In the present work we study the scope of validity of two-state diffusion equations (TSDEs)
which are frequently used to describe nonadiabatic interlevel transitions in molecular systems
immersed in a condensed medium. Most familiar are their implementations for electron
transfer (ET) reactions in polar solvent [1–4]; an application to proton transfer (PT) has been
also discussed recently [5]. A representative model to be considered comprises a pair of energy
profiles extended over a coordinate which imitates the solute and is henceforth denoted as y.
The dynamics of y is classical on each energy curve; however, quantum transitions between two
levels are promoted by the nonadiabatic coupling denoted as V . The classical coordinate y is
bilinearly coupled to a ensemble of harmonic oscillators which represents medium dynamics;
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Figure 1. Typical cases of interlevel transitions. The transition occurs between energy profiles
ε1 and ε2; � = ε2 − ε1 is the level separation. (a) The ‘inverted’ case. (b) The ‘normal’ case;
the two versions (1) and (2) for ε2 correspond to exothermic and endothermic reactions. (c) The
‘resonance’ case (no relative shift of equilibrium positions of curves ε1 and ε2). For harmonic
potentials with the same curvature � is constant for case (c). Cases (a) and (b) correspond to
the diabatic representation. We retain for brevity the same notation εi (i = 1, 2) for diabatic and
adiabatic energy profiles.

this interaction results in friction effects. Typical examples are displayed in figure 1; they
correspond either to ‘spectroscopic’ (mainly vertical) transitions (figure 1(a)) or to ‘chemical’
(horizontal) transitions (figure 1(b)). These processes are often referred to as ‘inverted’ and
‘normal’ cases in the ET theory. The energy level separation � and nonadiabatic coupling V
are both y dependent; the simplest example with constant � (a particular case of figure 1(a))
is shown in figure 1(c). This is the so-called ‘resonance level model’ [5].

The TSDE can be formulated in both diabatic and adiabatic representations. In the recent
literature, the derivations and applications have been almost exclusively addressed to the
diabatic case whereas our present work is devoted to the adiabatic theory. In this introductory
discussion the notational discrimination between the two cases is not essential and we use the
same notation εi (i = 1, 2) and � = ε2 − ε1 for both adiabatic and diabatic energy profiles.

A derivation of TSDE from the microscopic-level description can be performed in terms
of different techniques. The schemes of reasoning reported in the literature include the path-
integral analysis of the influence functional approach [6], the decoupling of the hierarchy
of kinetic equations [7, 8], the quantum–classical reduction within the Redfield formulation
of the quantum relaxation theory [9] and a stochastization of the conventional quasiclassical
trajectory approach of the gas phase theory of nonadiabatic transitions [10, 11]. In any case, the
reduction is not at all rigorous. It actually suggests a set of approximations that trace a guideline
along which the coupled diffusion dynamics could emerge from a fully quantum mechanical
original model. This situation is in a striking contrast with the one-channel (a single state)
case where a rigorous one-to-one correspondence between the underlying physical model and
the diffusion (Fokker–Planck) equation is well known [12, 13].

Recently, the validity of this TSDE was called into question [14, 15]. The promoting
argument referred to an unphysical behaviour of the transition element ρ12 of the reduced
density matrix ρ for variable y. It was observed within a short time interval (0 < t < h̄/kB T )

for a specially constructed, rather artificial, model case. The pathologic effect is especially
visible when the gap � between the energy levels is large in the transition region. This seriously
questions the possibility of a classical diffusion description of quantum variable ρ12.

This comment can be relaxed by a counterargument [5] that it is a much longer timescale,
governing the evolution of level populations ρ11 and ρ22, which really matters. The fast
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transition dynamics, i.e. the quantum beats of ρ12 at the frequency ω0 = �/h̄, is smeared [16]
by a standard stationary condition dρ12

dt = 0 which adjusts the average motion of fast variable
ρ12 to a slow evolution of level populations. The unphysical trends become unobservable on
a coarse-grained timescale of the population dynamics.

The problems with multi-channel diffusion equations are not, however, fully resolved by
this notion. Actually, no satisfactory proofs that fundamental properties of reduced density
matrix ρ cannot be violated in a TSDE have been presented. The kinetic regime with high-
frequency quantum beats (h̄ω0 � kB T ) seems to be especially dangerous. It pertains to
transitions proceeding far away from the cross-point of diabatic energy levels [5]. In a
conventional TSDE, there appear three parameters having the dimension of frequency, namely,
ω0, ωtr = |V |

h̄ (the transition frequency) and η (the friction coefficient which measures the
coupling strength between classical coordinate y and its environment). The case

η

ωtr
� 1; ω0

ωtr
� 1; ω0

η
� 1 (1.1)

is typical, for instance, for PT systems. An inspection of whether the quantum–classical
diffusion equations are valid within this range of parameters is quite necessary.

Several observations signalized that the situation is hardly satisfactory. Most obvious is
the violation of the detailed balance in TSDE [5, 17]. This effect is immediately recognized
for large ω0(

h̄ω0
kB T � 1). Nonadiabatic transitions due to dynamic coupling V cannot provide

the detailed balance in TSDE. An alternative (complementary) thermal transition mechanism
is expected to exist but it has not been revealed so far. Secondly, unphysical (negative)
dynamical transition rates cannot be avoided in endothermic ET reactions (a special case
of figure 1(b)) [15]. Finally, we add here a third comment concerning a derivation of
multi-channel Smoluchovsky equations. They were conventionally deduced [6, 9] from the
original coupled Fokker–Planck equations in the overdamped kinetic limit, when the friction
coefficient η is implied to be the largest quantity having dimension of frequency in a given
system [18]. This condition is certainly violated in equation (1.1), thus questioning the two-
channel Smoluchovsky approximation.

All these ambiguities motivated our present study. We reconsidered a derivation of the
TSDE from the basic equation of the quantum relaxation theory [19–21]:

∂ρ

∂ t
= 1

h̄
[h, ρ] + K̂ρ. (1.2)

Here h is the solute Hamiltonian, the brackets mean a commutator and K̂ represents
the relaxation integral operator responsible for the solute–medium interaction. The main
conclusions of this analysis are as follows. It is not the quantum–classical approximation [22]
that causes the problems. The main reason arises at the stage of a derivation of the
Smoluchovsky limit for multi-channel Fokker–Plank equations. The standard reasoning [6, 9]
is strongly restricted here by the condition [9] ω0 � η and becomes invalid when it is violated.
Another problem lies in the perturbation theory that is actually invoked at the stage of derivation
of the relaxation operator. The system/medium interaction is conventionally taken as a bilinear
form hyQ ∝ y Q where y represents the classical reaction coordinate and Q is a collection
of bath variables. A consistent perturbational treatment of this term is only possible when
a transition is well localized at the cross-point of diabatic energy levels. It may become
invalid for the perturbations extended over y as revealed for the case of the ‘normal’ ET
(figure 1(b)) [15], when diabatic energy levels are strongly mutually shifted along the reaction
coordinate. The choice of the zero-order approximation becomes of crucial importance in
this case. We found two conditions assuring a consistency of the perturbational approach.
Firstly, a special separation of the total system into a dynamical subsystem (the solute) and
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the environment is obligatory. It is provided by redefining the bath oscillator coordinates
so as to be adjusted for a motion of the classical solute variable y. The second obligatory
condition requires an adiabatic representation for the quantum two-state variable. Considering
perturbationally the solute/environment interaction in a zero-order system prepared according
to this prescription the detailed balance is regenerated; the other problems disappear as well.
This distinguished representation has not been considered before; its formulation is the main
novelty of the present study.

Manipulation with Liouville matrices, which is an essence of the work with equation (1.2),
requires lengthy and tedious transformations. This determined the style of the further
presentation. For the sake of clarity, we separated this technical part from the general scheme
of reasoning outlined in sections 2–9. The details are briefly followed in appendices A–D.

2. The condition restoring the detailed balance

The problem of quantum–classical reduction of the equation of motion arises in systems
with two highly anisotropic dynamical timescales. We consider the Hamiltonian Hxy for a
combination of quantum (fast) and classical (slow) variables x and y:

Hxy = hx + hy + hxy . (2.1)

Here hx and hy depend only on x, ∂
∂x and y, ∂

∂y respectively; hxy represents the interaction.
The classical limit transition for y will be made as the next step. The dynamical system (x, y)

interacts with the environment composed of harmonic medium modes Qν : Q = {Qν} with
the bath Hamiltonian HQ. The total (system + medium) Hamiltonian is

HxyQ = Hxy + hQ + hxyQ . (2.2)

The interaction hxyQ is bilinear,

hxyQ = �xy	Q (2.3)

where 	Q is a linear combination of medium operators (Qν or ∂
∂ Qν

) as specified below.
We separate variable x and consider corresponding eigenfunctions ϕi and eigenvalues εi :

(hx + hxy)ϕi = εiϕi . (2.4)

The Schrödinger equation (2.4) defines the y-dependent adiabatic representation:

ϕi = ϕi (x |y); εi = εi(y).

The first step towards quantum–classical equations suggests averaging (i.e. integration over x)
the equation (2.1) with functions ϕi(x |y). Consider a two-level model with i , j = 1, 2 and
focus on the operator �xy in the coupling term (2.3). After averaging it converts into 2 × 2
matrix

� =
(

�11 �12

�21 �22

)
. (2.5)

The matrix elements depend on y and/or ∂
∂y :

�i j = 〈ϕ j |�xy |ϕi〉 (2.6)

where 〈· · ·〉 means integration over x .
A necessary condition that the relaxation operator K̂ in equation (1.2) contained the terms

responsible for the detailed balance can be formulated as

�12 �= 0, �21 �= 0. (2.7)

This conclusion follows from an inspection of the derivation of the thermal equilibrium
conditions from the quantum relaxation theory based on equation (1.2) [19–21]; the present
work suggests an explicit implementation of such an analysis. Matrix elements (2.7) always
vanished in earlier studies of multi-channel quantum–classical equations.
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3. The solute/bath interaction

The structure of relaxation operator K̂ in equation (1.2) is determined by the form of interaction
operator �xy . The model where �xy is x independent introduces a significant simplification
and produces a realistic background for applications. In conventional theories �xy = y. Here
we assume

�xy → �y = −ih̄
∂

∂y
. (3.1)

The explanation of how the expression (3.1) can arise is suggested below. This assumption
results in the following structure of matrix �:

� = �1 + �2

�1 = −ih̄
∂

∂y

(
1 0
0 1

)
; �2 = −ih̄ J

(
0 1

−1 0

)
(3.2)

where the coupling term is

J (y) = 〈ϕ1| ∂

∂y
|ϕ2〉 = 〈ϕ1| ∂Wx y

∂y |ϕ2〉
ε2 − ε1

. (3.3)

We imply that the interaction in equation (2.1) is a potential term: hxy = Wxy = W (x, y).
In the diabatic representation (y-independentϕi (x)) no coupling can be inserted in matrix

�. Both necessary conditions, i.e. the form (3.1) of the system–bath interaction and the
adiabatic representation, have never been satisfied in earlier studies; this was followed by an
immediate consequence of a violation of conditions (2.7).

4. The shifted bath oscillators as natural environment variables

Originally, the variables y (the slow dynamical coordinate), qν (the bath) and their interaction
are defined in terms of the Hamiltonian

Hyq = hy + hq + hyq (4.1)

where hq represents a standard ensemble of purely oscillatory modes qν with masses mν and
frequencies ων . The bilinear interaction is defined as

hyq = y
∑

ν

cνqν (4.2)

where cν are coupling amplitudes. A standard procedure transforms this interaction by shifting
the equilibrium positions of bath oscillators as

Qν = qν − q0ν

q0ν = −y
cν

mνω2
ν

.
(4.3)

Usually, this procedure is performed with a harmonic potential for the system coordinate
y [12, 13, 23, 24]; then y is involved in the transformation (4.3) resulting in the corresponding
shift of its equilibrium position (the spin-boson model). The novel element of the present
approach is that we do not change y but treat shifted modes Qν as modified bath variables
adjusted to y. On the other hand, as compared to the one-channel stochastic approach [12, 13],
the change of variables qν → Qν is an essential novelty. Such a change is unnecessary in
one-channel applications, when transformation of the dynamic equation to the GLE form is
exact [25, 26]. In our multi-channel case a modified bath formulation is a necessary ingredient
of the proper zero-order approximation underlying the second-order Redfield equation (1.2).
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The change of variables results in the following modification of Hamiltonian (4.1):

Hyq → HyQ = hy + hQ + hyQ . (4.4)

Here hy is modified by adding an extra potential term (we do not change the notation for
brevity):

hy → hy − 1

2
y2

∑
ν

c2
ν

mνω2
ν

. (4.5)

Coordinates Qν are coupled via kinetic energy (see appendix A). Diagonalization of the
pertaining bath Hamiltonian provides the new oscillator variables and the new bath frequency
spectrum. We imply this procedure to be performed but retain for brevity the same notations
Qν and ων for the transformed bath modes and frequencies. With this contracted notation we
find the remainding components of equation (4.4) as

hQ =
∑

ν

− h̄2

2

∂2

∂ Q2
ν

+
ω2

ν

2
Q2

ν

hyQ = −ih̄
∂

∂y

∑
ν

γν

(
−ih̄

∂

∂ Qν

)
.

(4.6)

The frequency spectrum and the spectral density are now modified as compared to the
original bath due to the diagonalization procedure. The new interaction amplitudes γν can be
explicitly expressed in terms of cν and other parameters of the original Hamiltonian (4.1), see
appendix A for details.

Equations (4.4)–(4.6) constitute a background for the basic Hamiltonian (2.2), (2.3). Its
most essential feature is the form (4.6) of the solute/bath interaction: just the same as required
in order to regenerate the detailed balance.

For the bath Hamiltonian and the interaction as given by equation (4.6) we shall further
need the correlation function,

K(τ ) =
∑
νν′

e−εν/kB T

Z
〈ν|	Q |ν ′〉〈ν ′|	Q|ν〉 exp

[
− iτ

h̄
(εν − ε′

ν)

]
(4.7)

where εν = h̄ων , Z is the partition function, oscillator states are denoted as |ν〉 and |ν ′〉 and

	Q =
∑

ν

γν

(
−ih̄

∂

∂ Qν

)
. (4.8)

All results will be expressed in terms of the two related correlation functions,

K+(τ ) = (1/2)[K(τ ) + K(−τ )]

K (τ ) = (1/2)[K(τ ) − K(−τ )]
(4.9)

which are available in a conventional form

K+(τ ) =
∑

ν

γ 2
ν

h̄ων

2
coth

h̄ων

2kB T
cos ωντ

K (τ ) = i
∑

ν

γ 2
ν

h̄ων

2
sin ωντ.

(4.10)

5. The dynamical evolution of the adiabatic two-level system

We considered the dynamical equation without the relaxation term that has the form

∂ρ

∂ t
= 1

ih̄
[h, ρ] = 1

ih̄
L[h]ρ (5.1)
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where L[h] is the 4 × 4 Liouvillian commutation matrix. The adiabatic two-state Hamiltonian
h is represented as

h =
(

p̂2

2m + ε1(y) h̄
i u J

− h̄
i u J p̂2

2m + ε2(y)

)
. (5.2)

Here ε1, ε2 represent adiabatic energy levels, coupling matrix element J is defined in
equation (3.3), u = p/m is the velocity where p = py represents the classical momentum. The
momentum operator p̂ reduces to p in the classical limit; in this case the operator matrix (5.2)
reduces to the ordinary matrix hc:

h → hc. (5.3)

For a general case the quantum–classical reduction rules are summarized in appendix B.
The quantum mechanical operator A is converted into matrix Ac, composed of classical
variables, similar to the reduction in equation (5.3). The commutation (L) and anticommutation
(M) operations with A reduce to the following operations performed with Ac:

L[A] ⇒ L[Ac] − ih̄

2
L[Ac]

M[A] ⇒ M[Ac] − ih̄

2
M[Ac].

(5.4)

On the right-hand side L[. . .] and M[. . .] represent the corresponding commutation and
anticommutation Liouvillian matrices composed of Poisson brackets involving the elements
of Ac as one of their components. The algorithm for explicitly performing operations L and
M is formulated in appendix B. It is straightforward to show that L = 0 and M = 0, when A
is proportional to the unit matrix: A = a I where a represents a scalar number or operator.

The solution to equation (5.1) is formally expressed in terms of the propagator

R(τ ) = exp

{
− iτ

h̄
L[h]

}
. (5.5)

The well known expression for L[h] [22] reads

L[h] = L[hc] + ih̄

(
−u

∂

∂y
+ B

∂

∂p

)
(5.6)

where, for the present adiabatic case,

L[hc] = ih̄




0 −u J −u J 0
u J iω0 0 −u J
u J 0 −iω0 −u J
0 u J u J 0


 (5.7)

B =



ε′
1 0 0 0

0 1
2 (ε′

1 + ε′
2) 0 0

0 0 1
2 (ε′

1 + ε′
2) 0

0 0 0 ε′
2


 + O(h). (5.8)

Here ω0 = �/h̄ = (ε2 − ε1)/h̄ and ‘′’ means d
dy . The off-diagonal elements of matrix

B have a higher order in h̄. They vanish after the classical limit transition h̄ → 0 and are
not specified here. Hence, the diagonal Poisson-bracket terms in equation (5.6) represent
the classical evolution along the trajectories governed by adiabatic potentials as suggested by
equation (5.8).
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For the case when only the diagonal part of matrix L[hc] is retained in equation (5.6) we
obtain the propagator

R0(τ ) =



1 0 0 0
0 eiτω0 0 0
0 0 e−iτω0 0
0 0 0 1


 . (5.9)

It contains high-frequency quantum beats between adiabatic levels (we focus on the case of
large ω0). By using the interaction representation, i.e. by assuming

R(τ ) = R0(τ )R1(τ ) (5.10)

and substituting equation (5.10) in (5.5) one can conventionally find the equation determining
R1(τ ). We introduce now timescales associated with different kinds of motion:

τcl = 1

ωcl
(the motion on classical trajectories)

τtr = 1

u J0
(the nonadiabatic transitions)

τbeats = 1

ω0
(the quantum beats).

(5.11)

Here ωcl denotes a characteristic frequency for the classical y-motion and coupling J (y) is
taken as J (y) = J0 + J1(y) + · · ·. Provided there exists a hierarchy of timescales obeying

τbeats � τcl, τtr (5.12)

we can conclude that for short time periods t satisfying

τbeats � t � τcl, τtr (5.13)

one can assume R1(τ ) ≈ 1 and

R(τ ) ≈ R0(τ ). (5.14)

This notion opens a way for the incorporation of quantum beats in the relaxation operator as
derived in appendix C.

6. The relaxation operator

The relaxation operator K̂ of the basic equation (1.2) is defined by the expression

K̂ρ = − 1

h̄2

∫ t

0
K̄ (τ )ρ(t − τ ) dτ. (6.1)

The general expression for the kernel K̄ (τ ) has been earlier derived [9] in the form

K̄ (τ ) = K+(τ )L[�]R(τ )L[�] − K (τ )L[�]R(τ )M[�] (6.2)

where L[�] and M[�] represent commutation and anticommutation operations with the
interaction operator � = �y . In the quantum–classical limit they reduce to operations
involving matrix �c as described by equations (5.4). Correlation functions K±(τ ) are defined
in equation (4.10).

The expression for �c is a classical limit of equation (3.2):

�c = �1 + �2

�1 = py

(
1 0
0 1

)
; �2 = −ih̄ J

(
0 1

−1 0

)
.

(6.3)
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The expressions to be inserted into equation (6.2) are

L[�1] = −ih̄
∂

∂y
≡ L1

M[�1] = 2 py ≡ M1

L[�1] = M[�1] = 0.

(6.4)

These results arise in terms of prescription (5.4) as applied to the diagonal part �1 of operator
�. Additionally, by operating with its off-diagonal part �2, we obtain Liouvillian matrices
corresponding to matrix commutations and anticommutations (the terms L2 and M2 below)
and the Poisson bracket terms (L3 and M3):

L[�2] = L2 + L3

L2 = −ih̄ J P

L3 = −ih̄ J ′Q
∂

∂p

(6.5)

M[�2] = M2 + M3

M2 = −ih̄ J Q

M3 = h̄2

2
J ′ P

∂

∂p
.

(6.6)

Here two matrices are introduced:

P =



0 1 1 0
−1 0 0 1
−1 0 0 1
0 −1 −1 0


 ; Q =




0 −1 1 0
1 0 0 1

−1 0 0 −1
0 −1 1 0


 . (6.7)

Altogether, the quantum–classical expressions for L[�] and M[�] to be inserted in
equation (6.2) are

L[�] = L1 + L2 + L3

M[�] = M1 + M2 + M3.
(6.8)

This is a result of an accurate quantum–classical reduction. In order to obtain the coupled
diffusion equations in a tractable form, a set of further approximations is required, which
retain ‘essential’ and drop away ‘inessential’ terms in equation (6.2). The underlying analysis
is transferred to appendix C.

7. The two-channel diffusion equations

The quantum–classical relaxation equations that follow if we select according to appendix C
important contributions to the relaxation operator have the form

∂ρ11

∂ t
= N11ρ11 + u J (ρ12 + ρ21) − J 2 D(ω0)ρ11 + J 2 D(−ω0)ρ22

∂ρ12

∂ t
= N12ρ12 + iω0ρ12 + u J (ρ11 − ρ22) − 2J 2[D0ρ12 + D+(2ω0)ρ21]

∂ρ21

∂ t
= N21ρ21 − iω0ρ21 + u J (ρ11 − ρ22) − 2J 2[D0ρ21 + D+(−2ω0)ρ12]

∂ρ22

∂ t
= N22ρ22 + u J (ρ12 + ρ21) + J 2 D(ω0)ρ11 − J 2 D(−ω0)ρ22.

(7.1)
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The following definitions and notations are accepted:

Ni j = D0
∂

∂y

[
∂

∂y
+

1

kB T

ε′
i + ε′

j

2

]
− u

∂

∂y
+

ε′
i + ε′

j

2m

∂

∂u
(7.2)

D(ω) =
∫ ∞

0
dτ [K+(τ ) cos ωτ + K (τ )i sin ωτ ] = 1

2

∫ ∞

0
dτ [K(τ )eiωτ + K(−τ )e−iωτ ]

D+(ω) =
∫ ∞

0
dτK+(τ )eiωτ

D0 = D(ω = 0) = D+(ω = 0).

(7.3)

The comments given below are aimed at clarifying several novel features of equations (7.1).

(a) Operators Ni j (i , j = 1, 2) are diagonal in the Liouvillian space, i.e. they correspond
to an independent evolution of elements ρi j of the density matrix. Their diffusion part
originates from matrices L1, M1 in equation (C.10). They generate equations for diagonal
elements ρ11, ρ22 that represent a true adiabatic evolution of a quantum–classical system.
A remarkable fact is that the Smoluchovsky diffusion limit is directly reached in terms of
the present formulation, without separating the Fokker–Planck equation as an intermediate
step. This result is gained due to expressing the solute/environment interaction in terms
of momentum operators.
Earlier derivations [6, 9] started from the bilinear coordinate-dependent interaction
and resulted in multi-channel Fokker–Planck equations, with the diffusion coefficient
Dp = mηkB T proportional to friction coefficient η. As discussed in the introduction,
their reduction to the Smoluchovsky limit by using standard methodologies [16, 18] is
formally prohibited in the case (η/ω0) � 1, when η proves to be not the smallest parameter
having dimension of frequency. The approach described in section 4 suggests a transparent
way to circumvent this difficulty.

(b) The terms proportional to u J are responsible for purely dynamical interlevel transitions.
Terms of this sort were also present in earlier multi-channel theories [2–4, 6, 9], with a
modification due to the diabatic representation of channel basis functions that has been
always invoked before. After eliminating off-diagonal elements of the density matrix by
using the Green function technique [9, 28, 29], the coupled balance equations for ρ11 and
ρ22 had been obtained. We repeat this concluding part of the derivation in the next section.

(c) The cross-terms containing correlation functions D(±ω0) comprise direct coupling of
adiabatic states promoted by the solute/bath interaction. They vanish in the diabatic
representation. The partial rates of corresponding nonadiabatic transitions obey the
detailed balance, because [19, 20]

D(ω0)

D(−ω0)
= e−h̄ω0/kB T . (7.4)

A search for these terms was the main objective of the present work. They arise as a result
of multiplications of relevant Liouvillian matrices in equation (6.2).

(d) We recall two simplifying approximations introduced in the last part of appendix C on
the way from the full expression (6.2) for the relaxation operator to equations (7.1).
This are, first, the ‘resonance condition’ ω′

0 = 0 which provides the simplest form
for the diffusion part of operators Ni j . Second, the ‘interference terms’ (C.11) are
neglected in the relaxation operator. The direct multiplication of Liouville matrices
shows that they contribute only to nonadiabatic transitions coupling ρii and ρi j and contain
quantities proportional to J ∂

∂y . On this background, it is expedient to introduce the
third approximation directly in equations (7.1), which would make them more tractable.
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We shall withdraw the last terms (with square brackets) from the second and third
equations (7.1), determining the evolution of ρ12 and ρ21. A rational motivation for
this step could be given by the relations

ω0 � J 2 D0 � J 2|D+(2ω0)| (7.5)

which are expected to be valid for the case of large ω0 we are considering here.

8. The balance equations

Our goal is to derive the Smoluchovsky limit of equation (7.1) under conditions providing the
following hierarchy of timescales which is in accord with equations (5.11)–(5.13):

ω0 � η � ωcl � τ−1
y . (8.1)

Here η denotes the friction coefficient (η−1 is the velocity relaxation period), ωcl is the
characteristic frequency of the classical y-motion and τy is the diffusion relaxation period.
These quantities are additionally interrelated as

D0 = kB T/mη, η = τyω
2
cl (8.2)

where D0 is the diffusion constant in equation (7.2). The y dependence of ω0 is suppressed in
this simplified treatment.

The first conventional step eliminating off-diagonal elements of the density matrix in
equation (7.1) is that one assumes

∂ρ12/∂ t = ∂ρ21/∂ t = 0. (8.3)

Provided the last terms on the right-hand sides of equations for ρ12 and ρ21 are negligible, as
discussed in item (d) of section 7, these equations become uncoupled and it suffices to consider
only ρ12. Under conditions (8.1) there exists a time interval �t which is much shorter than
τy but much larger than ω−1

0 . Equations (8.3) are valid for ρ12 averaged over such an interval.
The averaging eliminates the strongly oscillating (with frequency ω0) component of ρ12 but
retains its regular component evolving on the diffusion timescale.

With this preliminary, we introduce the Green operator resolving equation (8.3) for ρ12:

G12 = (iω0 + N12)
−1 ∼= (iω0)

−1(1 − N12/iω0). (8.4)

According to equation (7.2), we separate the diffusion and classical dynamic components of
operator N12:

N12 = L12 + M12

L12 = D0
∂

∂y

[
∂

∂y
+

1

2kB T
(ε′

1 + ε′
2)

]

M12 = −u
∂

∂y
+

1

2m
(ε′

1 + ε′
2)

∂

∂u
.

(8.5)

The characteristic frequency of N12 is ωcl and the inequality ωcl/ω0 � 1 accounts for the last
approximation involved in equation (8.4). The resulting expression for the regular component
of ρ12

ρ12(t) = −(iω0)
−1[1 − (L12 + M12)/iω0]u J [ρ11(t) − ρ22(t)] (8.6)

is now inserted in the first and fourth lines of equations (7.1). Note that ρ11(t) and ρ22(t) are
functions of y and u; on the other hand, we suppress here for simplicity the y dependence of J ,
similar to the case of ω0 as noted above. Provided only the coarse-grained diffusion timescale
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(�t no less than the velocity relaxation period) is essential, one introduces spatial distributions
σ11(y, t) and σ22(y, t) by assuming

ρ11(y, u, t) = (m/2πkB T )1/2 exp(−mu2/2kB T )σ11(y, t)

ρ22(y, u, t) = (m/2πkB T )1/2 exp(−mu2/2kB T )σ22(y, t).
(8.7)

The dynamic components of operators N11 and N22 vanish after operating with the
Maxwell distributions (8.7) and performing integrals over u. This procedure also eliminates
dynamic operator M12 in equation (8.6). The simplified version of balance equations which
ultimately arises under approximations (8.3), (8.4), (8.6) and (8.7) is expressed as the
nonadiabatic Smoluchovsky equations

∂σ11/∂ t = D0
∂

∂y

[
∂

∂y
+ ε′

1/kB T

]
σ11 + J 2[D(−ω0)σ22 − D(ω0)σ11]

− 2J 2kB T

ω2
0m

L12[σ11 − σ22] (8.8)

and the similar equation for σ22. Here we supposed for simplicity that J does not depend
on y. The nonadiabatic transitions generated by the second and third terms of equation (8.8)
originate, respectively, from the thermal solute–bath interaction and from the direct dynamic
interlevel interactions. It is remarkable that the dynamic term vanishes when the diffusion
relaxation is completed and σ11 and σ22 become Boltzmann distributions. This is so because
diffusion operator L12 annihilates Boltzmann distributions. This conclusion is exact provided
ω0 and J are y independent, as assumed above. Otherwise, some extra terms proportional
to ∂ω0/∂y and ∂ J/∂y arise which are, however, of little significance, because expressions
of this sort were not treated quite accurately in other places in the present derivation (see
appendix C for example). It can be stated that the quantities ω0 and J should be treated like
quasiclassical potentials which means that their commutations with operator ∂/∂y may be
neglected. Altogether, we infer that only thermal transitions seem to occur once the intralevel
equilibrium is attained. On the other hand, dynamic nonadiabatic transitions are significant in
a case of strongly nonequilibrium spatial level distributions.

Finally, let us discuss the different kinetic regime determined by the alternative condition to
equation (8.1), namely ω0 � η. Under this assumption the velocity relaxation with the period
τu = η−1 provides the shortest timescale as compared to other processes and we can apply an
approximation similar to equation (8.7) directly to ρ12 and ρ21. Then averaging over u with
Maxwell distributions annihilates the terms coupling diagonal and off-diagonal elements of
the density matrix in equation (7.1). As a result, one obtains diffusion equations (8.8) without
dynamic transitions (the last term of equation (8.8) is dropped). The adiabatic representation
of this sort has been considered by Shushin and Tachiya [10, 11].

9. Discussion

The earlier work with the TSDE [1–4, 6, 13, 15, 26] was mainly addressed to a ‘normal’ ET
(figure 1(b)) in a diabatic representation. Such approach is constrained by a condition that
the transition state must be localized [2, 3, 13]. The alternative adiabatic treatment met some
inherent problems [10, 11]. It was revived recently [11, 28–30] in the context of the ‘inverted’
ET (figure 1(a)). The present study has established a natural background for deriving adiabatic
quantum–classical TSDEs in the case of delocalized interlevel transitions. It covers all
examples shown in figure 1 provided the adiabatic energy gap is not too small (ūJ/ω0 � 1; here
ū means the mean thermal velocity). We formulated the two conditions that are sufficient for
making consistent the quantum–classical limit transition. First, the solute/medium interaction
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must be expressed in terms of momenta rather than the coordinates; this description emerges
when the adjusted bath model is accepted as a zero-order approximation for the second-order
relaxation equation (1.2). Second, an adiabatic rather than diabatic representation of the
channel (electronic) basis functions must be used. The distinguished role of the adiabatic
representation for reproducing the detailed balance effect is a consequence of the interaction
model introduced in section 3. The direct interaction of the fast quantum variable (x) with
thermal bath modes (q) is disregarded. The coupling of the dynamic subsystem to the bath
is performed exclusively via the slow coordinate (y): hxyq → hxy , see equation (3.1). As a
result, the system-induced factor � of the bilinear interaction term becomes a diagonal matrix
in a diabatic two-state representation. On the other hand, matrix � acquires its off-diagonal
coupling term responsible for the detailed balance if the direct x/q interaction is introduced,
irrespective of whether the basis states are diabatic or adiabatic and whether the interaction
is expressed in terms of coordinates or their momenta. We preferred, however, a pure model
requiring a minimum amount of input information in order to reproduce the desired effect. In
fact, it naturally covers electron and PT systems and thereby has a number of applications.

The thermal transitions ensuring detailed balance are supplemented by purely dynamical
transitions which can be important in the adiabatic regime until intralevel Boltzmann
equilibrium is gained. Such a description seems quite relevant for the resonant case (figure 1(c))
when the transitions are located around the minima of adiabatic potentials far away from the
cross-point region. For an inverted ET case (figure 1(a)) a competition between transitions of
this sort and those at the cross-point should be investigated.

The present adiabatic Smoluchovsky model applies for two extreme cases when ω0 is large
(ω0/η � 1, equation (8.8) of the present work) or small (ω0/η � 1, equation (8.8) without
the last ‘dynamic’ term); this approach was originally derived in [11]. Intermediate cases do
not allow for a separation of timescales and thus require a complete treatment in terms of
equation (7.1) involving both coordinate y and velocity u. The diabatic representation seems
to be most relevant for a treatment of the avoided crossing region with a small level splitting
(ū J/ω0 � 1) and conventional procedures [2–4, 6, 13] are well adapted for this case.
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Appendix A. The bath transformation

Consider a transformation of the Hamiltonian in equation (4.1) in terms of two sets of
coordinates

(ri ) = (y, qν); (r ′
i ) = (y, Qν) i = 0, 1, . . . (A.1)

with r0 = r ′
0 = y and ri = qν , r ′

i = Qν for i = ν = 1, 2, . . .. The metric tensor for the set (r ′
i )

is defined as

gi j =
∑
k=0

1

mk

∂r ′
i

∂rk

∂r ′
j

∂rk
(A.2)
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where m0 = m is the mass for y. This expression becomes readily available by explicitly
evaluating the derivatives in terms of equation (4.3):

g00 = 1

m
≡ gyy; g0ν = gν0 = −bν

m

gµν = 1

m

∂ Qµ

∂y

∂ Qν

∂y
+

∑
λ=1

1

mλ

∂ Qµ

∂qλ

∂ Qν

∂qλ

= 1

m
bµbν +

1

mµ

δµν.
(A.3)

Here the notation bν = cν

mvω2
ν

is introduced. This metric tensor is y independent.
Altogether, the transformation qν → Qν changes the kinetic energy, the interaction

and adds y-dependent terms to the bath oscillator potentials. The latter contributions
renormalize the solute potential according to equation (4.5) [25]. The remaining components
of Hamiltonian (4.1) change as

hq + hyq → hQ + hyQ

hQ =
∑
µν

− h̄2

2Mµν

∂

∂ Qµ

∂

∂ Qν

+
∑

ν

mνω
2
ν

2
Q2

ν

hyQ = −ih̄
∂

∂y

∑
ν

bν

m

(
−ih̄

∂

∂ Qν

)
.

(A.4)

They are now expressed in terms of the parameters of the metric tensor (A.3), namely bν and

1

Mµν

= 1

mν

δµν +
1

m
bµbν. (A.5)

The final step is a trivial diagonalization of the bath Hamiltonian hQ which yields
equation (4.6) with new normal modes Qν and their new frequencies ων (the notation is
not changed for brevity). This procedure is unnecessary to specify in the present context; it
will be specially considered elsewhere.

Appendix B. Quantum–classical expressions for commutations and anticommutations

Let matrix elements ai j and bi j of matrices A and B be quantum mechanical quantities,
composed of coordinate (y) and momentum (py = −ih̄ ∂

∂y ) operators. In the classical limit
they convert into ac

i j and bc
i j , the same functions of the classical coordinate and momentum.

The corresponding matrices are Ac and Bc. The following expressions represent classical
limits for the commutation [. . . , . . .]− and anticommutation [. . . , . . .]+ operations:

([A, B]∓)i j = ([Ac, Bc]∓)i j − ih̄

2

∑
k

{ac
ik, bc

k j } ± {ac
k j , bc

ik}. (B.1)

Here {. . . , . . .} denotes Poisson brackets:

{a, b} = ∂a

∂py

∂b

∂y
− ∂a

∂y

∂b

∂py
.

The prescription (B.1) follows after properly taking the classical limit, including the
first-order in h̄ terms, for operator products. These rules [22] comprise a truncated Taylor
expansion based on the Wigner-transform technique. The full expansion, also called the Weyl
transformation, is available in the literature [27].
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Appendix C. The simplification of the quantum–classical relaxation operator

C.1. The local approximation

The relaxation term (6.1) can be modified by assuming [9, 15]

ρ(t − τ ) = R(−τ )ρ(t). (C.1)

This approximation implies a purely dynamic evolution without relaxation. It does not violate
the accuracy of equation (6.1) which was obtained as a second order of the perturbation
expansion relative to the relaxation operator; any relevant correction added to equation (C.1)
would contribute to a higher order of the perturbation theory.

By this means, the integral operator K̂ is transformed to the Liouvillian matrix K :

[K̂ρ](t) = Kρ(t)

K = − 1

h̄2

∫ ∞

0
K̄ (τ )R(−τ ) dτ.

(C.2)

The upper limit t = ∞ becomes legitimate after extending the hierarchy of timescales
suggested by equations (5.11), (5.12):

τbeats � τbath � τcl, τtr . (C.3)

Here τbath denotes the characteristic period of the bath relaxation determined by the widths of
bath correlation functions. Without its left-hand part,

τbeats � τbath (C.4)

inequality (C.3) is a standard condition eliminating non-Markovian effects from relaxation
kinetics. The additional constraint (C.4) provides a background for making a change
R(±τ ) → R0(±τ ) in the integrand of equation (C.2). This simplification is discussed at
the end of section 5. It proves to be premature at the present stage but can be safely introduced
after integration by parts, as described below.

C.2. Sorting the orders of magnitude

It is now expedient to rewrite the integrand of relaxation matrix K in a more explicit form:

K̄ (τ )R(−τ ) = K+(τ )A+ + K (τ )A

A+ = (L1 + L2 + L3)R(τ )(L1 + L2 + L3)R(−τ )

A = (L1 + L2 + L3)R(τ )(M1 + M2 + M3)R(−τ ).

(C.5)

In this expression one can eliminate the terms which contain higher orders in the Planck
constant h̄. According to equation (C.2) the terms containing h̄n with n > 2 vanish when
taking the classical limit. The analysis of orders of magnitude in equation (C.5) follows from
the estimate of such orders pertaining to its ingredients:

M1 ∼ 1

L1, L2, M2 ∼ h̄
L3, M3 ∼ h̄2.

(C.6)

The low order for M1 = 2 py looks unusual. It can be, however, shifted by invoking integration
by parts as described in appendix D. So, we introduce the function

�(τ) =
∫ τ

0
dτ K (τ ) (C.7)
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in terms of which the following identity is obtained:

−
∫ ∞

0
K (τ )L1 R(τ )M1 R(−τ ) dτ =

∫ ∞

0
�(τ)L1 R(τ )2B(y)R(−τ ) dτ (C.8)

where B(y) is the diagonal matrix defined in equation (5.8). From equations (4.10) we observe
also that

2i

h̄
�(τ) = 1

kB T
K+(τ ) (C.9)

in the classical limit ( h̄ω
kB T � 1). By this means, the order of M1 is shifted higher by one point,

according to equation (C.8).

C.3. Simplifying assumptions

After utilizing equations (C.8) and (C.9) we can turn back to equation (C.5). With these
precautions, the simplified expression for the relaxation operator is obtained by counting
orders of magnitude of its ingredients, withdrawing higher-order terms and performing the
substitution (C.5) in the remaining expression. Such an analysis separates the leading terms
and provides the expression

A+ = L1 R0(τ )L1 R0(−τ ) + L2 R0(τ )L2 R0(−τ )

A = L1 R0(τ )M1 R0(−τ ) + L2 R0(τ )M2 R0(−τ ).
(C.10)

Three remaining nonvanishing terms (i.e. those having the order h̄2) are excluded from
equation (C.10):

L1 R0(τ )L2 R0(−τ )

L2 R0(τ )L1 R0(−τ )

L2 R0(τ )M1 R0(−τ ).

(C.11)

In equation (C.10) the first components (containing L1 and M1) generate diffusion terms; the
second components (containing L2 and M2) are responsible for nonadiabatic transitions. The
interference terms (C.11) are omitted in the further treatment.

Neglecting interference terms will be also complemented by neglecting the commutator
[L1, R0] in equation (C.10) This commutator generates terms similar to (C.11). It vanishes
exactly in the case when the energy difference �(y) = ε2(y) − ε1(y) becomes constant
(see figure 1(c)). Actually, the condition ∂�

∂y = 0 is acceptable, because, in the adiabatic
representation, the interlevel transitions are localized in the vicinity of extremum points of the
adiabatic energy profiles.

Appendix D. The integration by parts of the relaxation operator

Consider the expression

K2 = − 1

h̄2

∫ ∞

0
dτ K (τ )L1 R(τ )A(y, py)R(−τ ). (D.1)

Here A represents a τ -independent Liouville matrix including y and py which are considered
as time-independent phase space variables. The following identity is valid:

d

dτ
[R(τ )AR(−τ )] = − i

h̄
R(τ )[L[h], A]R(−τ ) (D.2)
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where [· · · , · · ·] denotes a commutator of Liouville matrices. When performing integration by
parts in equation (D.1) we need a notation

�(τ) =
∫ τ

0
dτ K (τ ) =

∑
ν

γ 2
ν

h̄

2i
cos ωντ. (D.3)

The result reads

K2 =
∫ ∞

0

(
− i

h̄
�(τ)

)
dτ {L1 R(τ )[L[h], A]R(−τ )}. (D.4)

When A = M1 = 2 py one obtains from equation (5.6)

[L[h], 2 py] = 2ih̄ B(y) (D.5)

thus giving rise to equation (C.8). In deriving equation (D.4) the following interpretation of
equation (D.1) is required: we consider K (τ ) as a causal function (K (τ ) = 0 for τ < 0) and
extend the lower integration limit as τ = −∞.

Note that the similar transformation is valid when we change L1 in equation (D.1) for L2

or L3. In the same way any terms in the second (anticommutator) part of equation (C.5) can
be rearranged.
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